
Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

Marvin Damschen, Lars Bauer, Jörg Henkel

Vorlesung im SS 2016

- 1 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

- 2 -

2. Overview and Definitions

- 3 - M. Damschen, KIT, 2016

 “Computing System that can (partially)

change the functionality of its hardware”

 This definition implies the use of so-called

Reconfigurable Hardware

 Other definitions exist (e.g. changing the

software, changing the task mapping & task

scheduling etc.) but in the scope of this

lecture we will focus on those approaches

that use reconfigurable hardware

- 4 - M. Damschen, KIT, 2016

 Here, we do not mean ‘time’ as a
physical unit or a continuous flow
◦ Rather, in the following we need to

distinguish three distinct points in time

 Design time: The system is specified,
the architecture is designed and the
IC is taped out and sold to customers

 Compile time: Software (e.g. application)
is compiled for the design-time fixed
IC; it can be simulated, profiled etc.

 Run time: The application executes on the IC
and faces varying situations (input data, other
applications etc.)
◦ Startup time: when the system boots, application starts etc.

src: Einstein, wissen.de

- 5 - M. Damschen, KIT, 2016

 “Adaptive computing refers to the capability of a com-

puting system to autonomously adapt one or more of

its properties (e.g. performance) during run time.”

 Reconfigurable Hardware is one of the key paradigms

that enable Adaptive Systems

 Not all reconfigurable systems are adaptive

◦ they don‘t need to perform run-time reconfiguration

◦ or they might only perform compile-time predetermined
run-time reconfigurations

 Not all adaptive systems rely on reconfigurable

hardware (e.g. they might use clever software or

OS/middleware to adapt their properties)

- 6 - M. Damschen, KIT, 2016

 An description of the particular work load of the
system for a particular time

 Which tasks are executing?

 How do these tasks depend on each other?
◦ Data dependencies in a task graph

◦ Resource conflicts, e.g. cache or periphery

 What are the deadlines for the tasks?

 What are the priorities for the tasks?

 What is the input data for the tasks?

 What are the requirements of the tasks
(computational power, energy consumption, demand
for hardware accelerators etc.)

- 7 - M. Damschen, KIT, 2016

Dynamic

Hardware

P
ip

e
lin

e
 R

e
g

is
te

r

IF/ID

Reconf.

Manager

Instruction

Memory

A
D
D

M
U
X

PC

A
L
U

Control

Data

Memory

Access

Data

Memory

Access

Branch taken?

Data

Memory

Hierarchy

Arbiter

Test

Condition4

PC

Register

File

Temporary

Storage for

sw-emul.

Jump Target

Reconf.

Hardware

Interconnect Bus

Sign

Extend

P
ip

e
lin

e
 R

e
g

is
te

r

ID/EXE

P
ip

e
lin

e
 R

e
g

is
te

r

EXE/MEM

P
ip

e
lin

e
 R

e
g

is
te

r

MEM/WB

 Integrate the
reconfigurable
HW into
the pipe-
line of a
pro-
cessor

 Use it as
a reconfi-
gurable
functional
unit (RFU)

 Further pos-
sibilities exist

- 8 - M. Damschen, KIT, 2016

 The reconf. hardware can
be used to implement
application specific
accelerators on demand

 The accelerators exploit:
◦ parallelism (multiple

independent operations are
executed at the same time in
parallel) and

◦ operator chaining (multiple
data-dependent operations
are executed right after each
other in the same cycle) to
achieve speedup

IN
0 +

16

>> 5 > 255

255
< 0

0 O
u

t 0

IN
1 +

16

>> 5 > 255

255
< 0

0 O
u

t 1

q0

- ABSp0

-p0

p1

-q0

q1

ABS

ABS

<

α

<

β

<

>> 1

α

+
2

<
-p2

p0

-q2

q0

ABS

ABS <

β

<

β

UV

Ba

Bb

X1

X2

BS

BS

- 9 - M. Damschen, KIT, 2016

 It is hardly possible to
physically change the
transistors (N-P doping
etc.) and the metal
layers after fabrication

 Changing them fast (for
run-time reconfiguration)
and in a meaningful way
can be considered
impossible

 So, that’s it??
src: FujitsuSuperSPARCII-85, cpu-world.com
 Weller, pkelektronik.com

??

- 10 - M. Damschen, KIT, 2016

User I/O

Configura-
tion Data

src: Kalenteridis et al. “A complete platform and toolset for system implementation
on fine-grained reconfigurable hardware“, Microprocessors and Microsystems 2004

- 11 - M. Damschen, KIT, 2016

src: Xilinx Virtex-II User Guide

- 12 - M. Damschen, KIT, 2016

 Two crossing lines are

either connected or not

◦ Control Bit decides

 Fine Grained: Each bit

line can be configured

independently

 Coarse Grained: Multiple

bit lines (bus) together

 src: T.J. Todman et al.: “Reconfigurable computing:
architectures and design methods”, IEEE Proc.-
Comput. Digit. Tech., Vol. 152, No. 2, March 2005

- 13 - M. Damschen, KIT, 2016

CLB: Configurable
Logic Block

PSM: Programmable
Switch Matrix

Additionally:
I/O Blocks,
RAM Blocks,
Multiplier,
CPUs, …

Virtex-II 6000:
96x88 CLBs
8.448 CLBs
67.584 LUTs

Virtex 4 LX 160:
192x88 CLBs
16.896 CLBs
135.168 LUTs

Virtex 7 2000T:

  1.221.600 LUTs

src: Xilinx Data Sheet 060 „Spartan and Spartan-XL Families […]“

M. Damschen, KIT, 2016

- 14 - M. Damschen, KIT, 2016

Configuration Memory (off-chip)

 Logic Layer: perform the
actual computation

 Configuration Layer:
determine the kind of
computation that shall be
performed
◦ Is typically configured from

external memory

◦ May also provide some con-
figuration cache inside the FPGA

 May allow reconfiguration of
parts of the area
 partial reconfiguration
◦ This allows placing a logic

inside the FPGA that recon-
figures another part of the FPGA
 Self-reconfiguration

Configuration Layer

Logic layer Logic layer

- 15 - M. Damschen, KIT, 2016

 PROM based (Fuse, Anti-Fuse)

— Only writeable one time

 (E)EPROM/Flash based (Floating-Gate)

+ Non-volatile  immediately configured after boot up

+ Configuration data not (necessarily) readable outside

the FPGA  Security; Intellectual Property (IP) protection

+ Low power consumption

— Limited re-writeability (i.e. only good for a limited

number of reconfigurations)

— Slow write access  not suitable for run-time

reconfiguration / self-reconfiguration

- 16 - M. Damschen, KIT, 2016

 SRAM based
+ Allows arbitrary number of reconfigurations
 good for prototyping

+ Fast reconfiguration
 Allows for run-time reconfiguration and self-reconfiguration

— Needs to be reconfigured after every boot up
 high power consumption
 Security problem, as everyone can observe the configuration
data (possible solution: bitstream encryption)

 Hybrid (both EEPROM and SRAM on the die / in the
package)
+ Allows fast run-time reconfiguration (SRAM) and does not need

external configuration data after boot up (automatically copying
EEPROM to SRAM)

— Still high power consumption during boot up

— Needs larger chip area

- 17 - M. Damschen, KIT, 2016

 Def.: ‘Bitstream’ : configuration data that is copied to the
configuration layer

 Def.: ‘Partial Bitstream’ / ‘Full Bitstream’ : a Bitstream
that configures ‘only certain parts of’ / ‘the entire’ FPGA

 A Bitstreams can become rather large:
◦ Full Bitstream depends on the FPGA, e.g. 2-20 MB for Virtex-6

◦ Partial Bitstream depend on the design, e.g. 100 KB – 1 MB

 Definition ‘Reconfiguration Bandwidth’ : the average
bandwidth to copy the Bitstream from the external
memory to the Configuration Layer (MB/s)
◦ Virtex-II was specified for 50 MB/s and was demonstrated to work

at 100 MB/s

◦ More recent FPGAs allow faster reconf. bandwidths (e.g. 32 bit @
100 MHz = 400 MB/s), but memory may become the bottleneck

- 18 - M. Damschen, KIT, 2016

 Practically, the bandwidth is limited by the

external memory

◦ In CES demonstrator for RISPP project we used

external EEPROM that provides on avg. 36 MB/s

◦ Alternatively, the system DDR RAM might be used

to store the partial Bitstreams

 Reduces the system’s memory performance during
reconfiguration

- 19 - M. Damschen, KIT, 2016

 Resulting Reconfiguration time
◦ Typically 1 ms - 10 ms if fast configuration ports are used

 Note: 1 MB/s corresponds to 1 KB/ms

◦ 100 KB @ 100 MB/s  1 ms

◦ 1 MB @ 200 MB/s  5 ms

◦ In CES demonstrator typically 30-40 KB @ 36 MB/s  0.8 –
1.1 ms

 How long is 1ms?
◦ 100,000 cycles of a 100 MHz CPU

◦ 1 million cycles of a 1 GHz CPU

◦ Task switch time (time slice) in Linux : ~10 ms
(depends on task scheduler, kernel version etc.; to some
degree configurable; could be 1ms, could be 100ms)
  it’s a rather long time for a CPU

- 20 - M. Damschen, KIT, 2016

+

xIN
0

+
+

O
U

T

xIN
1

+

xIN
2

xIN
3

+

xIN
4

+

xIN
5

+

xIN
6

xIN
7

 The rather slow reconfi-
guration time is due to the
large amount of configu-
ration data

 For instance, the examples
on the right demand 8-16
bit Adds, Subs & Mults

 Many LUTs need to be
configured and connected
to implement an Adder etc.
◦ This leads to rather large

partial bitstreams

◦ It also affects the area
requirements and the
maximal frequency

+ << 1+

2

+ + + >> 3

p0

p1

q0

+
p2

+p3 << 1

>> 2

+ +

2

>> 3

q1

p0
'

p1
'

p2
'

p3
'

+ << 1+

2

+ + + >> 3

q0

q1

p0

+
q2

+q3 << 1

>> 2

+ +

2

>> 3

p1

q0
'

q1
'

q2
'

q3
'

+

p1

q1

+

+

p0
'

p1
'

p2
'

p3
'

q0
'

q1
'

q2
'

q3
'

>> 2

>> 2
q1

q2

q3

p1

p2

p3

X1

X2

p0
'

p1
'

p2
'

p3
'

q0
'

q1
'

q2
'

q3
'

Q
32

32
P

1

X1

1

X2

P
'

32
Q

'

32

Loop

Filter

Interface:

X00

X30

X10

X20
Y20

Y00

Y10

Y30

>> 1−

>> 1

>> 1

−
>> 1++

+
+

<< 1

<< 1

−

−

DCT HT

- 21 - M. Damschen, KIT, 2016

 If multiple arithmetic and/or logical
operations need to be performed, then
an ALU might outperform LUTs:

 Differences:
+ Significantly less configuration data

+ Smaller area footprint (for the operations it
implements)

+ Higher Frequency

— Reduced efficiency when facing non-
arithmetic operations or bit-level operations
(resulting in increased area requirements
and/or increased latency)
 E.g. bit shuffling: how many cycles are needed

to perform the operation shown on the right
side with one ALU? Or: How many ALUs are
needed to pipeline the operation?

ALU
ctrl

16 bit Input 16 bit Output

- 22 - M. Damschen, KIT, 2016

src: PACT’s XPP 64-A1 architecture

 2-D array of
connected ALUs

 Connections
often limited to
direct neighbors

 Sometimes data
may only move
downwards
(starting at the
top of the array
and ending at
the bottom)

M. Damschen, KIT, 2016

- 23 - M. Damschen, KIT, 2016

 Different connection Topologies: Performance vs. Area
◦ 2D Mesh (1 step Manhattan neighborship, also called von

Neumann neighborship)

◦ Extended Mesh (2 step orthogonal Manhattan neighborship)

◦ Full orthogonal neighborship (each FU can access all other FUs in
the same column and the same row)

src: B. Mei et al. “Architecture Exploration for a Reconfigurable Architecture
Template”, IEEE Design and Test of Computers, vol. 22, no. 2, pp. 90-101, 2005

- 24 - M. Damschen, KIT, 2016

 Left side: Number and
placement of Multipliers
(more expensive than ALUs)

 Bottom side: Number and
placement of load/ store
units

src: B. Mei et al. “Architecture Exploration for a Reconfigurable Architecture Template”,
 IEEE Design and Test of Computers, vol. 22, no. 2, pp. 90-101, 2005

M. Damschen, KIT, 2016

- 25 - M. Damschen, KIT, 2016

 Reconfigurable Hardware can be used to
implement accelerators
◦ Connected to CPU

◦ Used by applications

 Reconfigurable hardware is implemented by
◦ Fine-grained structures (LUT array) or

◦ Coarse-grained structures (ALU array)

◦ They differ in their efficiency, depending on the required
operations (bit/byte level vs. word level)

 Configuration data and configuration time have
to be kept in mind to exploit the advantages of
run-time reconfiguration

