
Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

Marvin Damschen, Lars Bauer, Jörg Henkel

Vorlesung im SS 2016

- 1 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

- 2 -

2. Overview and Definitions

- 3 - M. Damschen, KIT, 2016

 “Computing System that can (partially)

change the functionality of its hardware”

 This definition implies the use of so-called

Reconfigurable Hardware

 Other definitions exist (e.g. changing the

software, changing the task mapping & task

scheduling etc.) but in the scope of this

lecture we will focus on those approaches

that use reconfigurable hardware

- 4 - M. Damschen, KIT, 2016

 Here, we do not mean ‘time’ as a
physical unit or a continuous flow
◦ Rather, in the following we need to

distinguish three distinct points in time

 Design time: The system is specified,
the architecture is designed and the
IC is taped out and sold to customers

 Compile time: Software (e.g. application)
is compiled for the design-time fixed
IC; it can be simulated, profiled etc.

 Run time: The application executes on the IC
and faces varying situations (input data, other
applications etc.)
◦ Startup time: when the system boots, application starts etc.

src: Einstein, wissen.de

- 5 - M. Damschen, KIT, 2016

 “Adaptive computing refers to the capability of a com-

puting system to autonomously adapt one or more of

its properties (e.g. performance) during run time.”

 Reconfigurable Hardware is one of the key paradigms

that enable Adaptive Systems

 Not all reconfigurable systems are adaptive

◦ they don‘t need to perform run-time reconfiguration

◦ or they might only perform compile-time predetermined
run-time reconfigurations

 Not all adaptive systems rely on reconfigurable

hardware (e.g. they might use clever software or

OS/middleware to adapt their properties)

- 6 - M. Damschen, KIT, 2016

 An description of the particular work load of the
system for a particular time

 Which tasks are executing?

 How do these tasks depend on each other?
◦ Data dependencies in a task graph

◦ Resource conflicts, e.g. cache or periphery

 What are the deadlines for the tasks?

 What are the priorities for the tasks?

 What is the input data for the tasks?

 What are the requirements of the tasks
(computational power, energy consumption, demand
for hardware accelerators etc.)

- 7 - M. Damschen, KIT, 2016

Dynamic

Hardware

P
ip

e
lin

e
 R

e
g

is
te

r

IF/ID

Reconf.

Manager

Instruction

Memory

A
D
D

M
U
X

PC

A
L
U

Control

Data

Memory

Access

Data

Memory

Access

Branch taken?

Data

Memory

Hierarchy

Arbiter

Test

Condition4

PC

Register

File

Temporary

Storage for

sw-emul.

Jump Target

Reconf.

Hardware

Interconnect Bus

Sign

Extend

P
ip

e
lin

e
 R

e
g

is
te

r

ID/EXE

P
ip

e
lin

e
 R

e
g

is
te

r

EXE/MEM

P
ip

e
lin

e
 R

e
g

is
te

r

MEM/WB

 Integrate the
reconfigurable
HW into
the pipe-
line of a
pro-
cessor

 Use it as
a reconfi-
gurable
functional
unit (RFU)

 Further pos-
sibilities exist

- 8 - M. Damschen, KIT, 2016

 The reconf. hardware can
be used to implement
application specific
accelerators on demand

 The accelerators exploit:
◦ parallelism (multiple

independent operations are
executed at the same time in
parallel) and

◦ operator chaining (multiple
data-dependent operations
are executed right after each
other in the same cycle) to
achieve speedup

IN
0 +

16

>> 5 > 255

255
< 0

0 O
u

t 0

IN
1 +

16

>> 5 > 255

255
< 0

0 O
u

t 1

q0

- ABSp0

-p0

p1

-q0

q1

ABS

ABS

<

α

<

β

<

>> 1

α

+
2

<
-p2

p0

-q2

q0

ABS

ABS <

β

<

β

UV

Ba

Bb

X1

X2

BS

BS

- 9 - M. Damschen, KIT, 2016

 It is hardly possible to
physically change the
transistors (N-P doping
etc.) and the metal
layers after fabrication

 Changing them fast (for
run-time reconfiguration)
and in a meaningful way
can be considered
impossible

 So, that’s it??
src: FujitsuSuperSPARCII-85, cpu-world.com
 Weller, pkelektronik.com

??

- 10 - M. Damschen, KIT, 2016

User I/O

Configura-
tion Data

src: Kalenteridis et al. “A complete platform and toolset for system implementation
on fine-grained reconfigurable hardware“, Microprocessors and Microsystems 2004

- 11 - M. Damschen, KIT, 2016

src: Xilinx Virtex-II User Guide

- 12 - M. Damschen, KIT, 2016

 Two crossing lines are

either connected or not

◦ Control Bit decides

 Fine Grained: Each bit

line can be configured

independently

 Coarse Grained: Multiple

bit lines (bus) together

 src: T.J. Todman et al.: “Reconfigurable computing:
architectures and design methods”, IEEE Proc.-
Comput. Digit. Tech., Vol. 152, No. 2, March 2005

- 13 - M. Damschen, KIT, 2016

CLB: Configurable
Logic Block

PSM: Programmable
Switch Matrix

Additionally:
I/O Blocks,
RAM Blocks,
Multiplier,
CPUs, …

Virtex-II 6000:
96x88 CLBs
8.448 CLBs
67.584 LUTs

Virtex 4 LX 160:
192x88 CLBs
16.896 CLBs
135.168 LUTs

Virtex 7 2000T:

 1.221.600 LUTs

src: Xilinx Data Sheet 060 „Spartan and Spartan-XL Families […]“

M. Damschen, KIT, 2016

- 14 - M. Damschen, KIT, 2016

Configuration Memory (off-chip)

 Logic Layer: perform the
actual computation

 Configuration Layer:
determine the kind of
computation that shall be
performed
◦ Is typically configured from

external memory

◦ May also provide some con-
figuration cache inside the FPGA

 May allow reconfiguration of
parts of the area
 partial reconfiguration
◦ This allows placing a logic

inside the FPGA that recon-
figures another part of the FPGA
 Self-reconfiguration

Configuration Layer

Logic layer Logic layer

- 15 - M. Damschen, KIT, 2016

 PROM based (Fuse, Anti-Fuse)

— Only writeable one time

 (E)EPROM/Flash based (Floating-Gate)

+ Non-volatile immediately configured after boot up

+ Configuration data not (necessarily) readable outside

the FPGA Security; Intellectual Property (IP) protection

+ Low power consumption

— Limited re-writeability (i.e. only good for a limited

number of reconfigurations)

— Slow write access not suitable for run-time

reconfiguration / self-reconfiguration

- 16 - M. Damschen, KIT, 2016

 SRAM based
+ Allows arbitrary number of reconfigurations
 good for prototyping

+ Fast reconfiguration
 Allows for run-time reconfiguration and self-reconfiguration

— Needs to be reconfigured after every boot up
 high power consumption
 Security problem, as everyone can observe the configuration
data (possible solution: bitstream encryption)

 Hybrid (both EEPROM and SRAM on the die / in the
package)
+ Allows fast run-time reconfiguration (SRAM) and does not need

external configuration data after boot up (automatically copying
EEPROM to SRAM)

— Still high power consumption during boot up

— Needs larger chip area

- 17 - M. Damschen, KIT, 2016

 Def.: ‘Bitstream’ : configuration data that is copied to the
configuration layer

 Def.: ‘Partial Bitstream’ / ‘Full Bitstream’ : a Bitstream
that configures ‘only certain parts of’ / ‘the entire’ FPGA

 A Bitstreams can become rather large:
◦ Full Bitstream depends on the FPGA, e.g. 2-20 MB for Virtex-6

◦ Partial Bitstream depend on the design, e.g. 100 KB – 1 MB

 Definition ‘Reconfiguration Bandwidth’ : the average
bandwidth to copy the Bitstream from the external
memory to the Configuration Layer (MB/s)
◦ Virtex-II was specified for 50 MB/s and was demonstrated to work

at 100 MB/s

◦ More recent FPGAs allow faster reconf. bandwidths (e.g. 32 bit @
100 MHz = 400 MB/s), but memory may become the bottleneck

- 18 - M. Damschen, KIT, 2016

 Practically, the bandwidth is limited by the

external memory

◦ In CES demonstrator for RISPP project we used

external EEPROM that provides on avg. 36 MB/s

◦ Alternatively, the system DDR RAM might be used

to store the partial Bitstreams

 Reduces the system’s memory performance during
reconfiguration

- 19 - M. Damschen, KIT, 2016

 Resulting Reconfiguration time
◦ Typically 1 ms - 10 ms if fast configuration ports are used

 Note: 1 MB/s corresponds to 1 KB/ms

◦ 100 KB @ 100 MB/s 1 ms

◦ 1 MB @ 200 MB/s 5 ms

◦ In CES demonstrator typically 30-40 KB @ 36 MB/s 0.8 –
1.1 ms

 How long is 1ms?
◦ 100,000 cycles of a 100 MHz CPU

◦ 1 million cycles of a 1 GHz CPU

◦ Task switch time (time slice) in Linux : ~10 ms
(depends on task scheduler, kernel version etc.; to some
degree configurable; could be 1ms, could be 100ms)
 it’s a rather long time for a CPU

- 20 - M. Damschen, KIT, 2016

+

xIN
0

+
+

O
U

T

xIN
1

+

xIN
2

xIN
3

+

xIN
4

+

xIN
5

+

xIN
6

xIN
7

 The rather slow reconfi-
guration time is due to the
large amount of configu-
ration data

 For instance, the examples
on the right demand 8-16
bit Adds, Subs & Mults

 Many LUTs need to be
configured and connected
to implement an Adder etc.
◦ This leads to rather large

partial bitstreams

◦ It also affects the area
requirements and the
maximal frequency

+ << 1+

2

+ + + >> 3

p0

p1

q0

+
p2

+p3 << 1

>> 2

+ +

2

>> 3

q1

p0
'

p1
'

p2
'

p3
'

+ << 1+

2

+ + + >> 3

q0

q1

p0

+
q2

+q3 << 1

>> 2

+ +

2

>> 3

p1

q0
'

q1
'

q2
'

q3
'

+

p1

q1

+

+

p0
'

p1
'

p2
'

p3
'

q0
'

q1
'

q2
'

q3
'

>> 2

>> 2
q1

q2

q3

p1

p2

p3

X1

X2

p0
'

p1
'

p2
'

p3
'

q0
'

q1
'

q2
'

q3
'

Q
32

32
P

1

X1

1

X2

P
'

32
Q

'

32

Loop

Filter

Interface:

X00

X30

X10

X20
Y20

Y00

Y10

Y30

>> 1−

>> 1

>> 1

−
>> 1++

+
+

<< 1

<< 1

−

−

DCT HT

- 21 - M. Damschen, KIT, 2016

 If multiple arithmetic and/or logical
operations need to be performed, then
an ALU might outperform LUTs:

 Differences:
+ Significantly less configuration data

+ Smaller area footprint (for the operations it
implements)

+ Higher Frequency

— Reduced efficiency when facing non-
arithmetic operations or bit-level operations
(resulting in increased area requirements
and/or increased latency)
 E.g. bit shuffling: how many cycles are needed

to perform the operation shown on the right
side with one ALU? Or: How many ALUs are
needed to pipeline the operation?

ALU
ctrl

16 bit Input 16 bit Output

- 22 - M. Damschen, KIT, 2016

src: PACT’s XPP 64-A1 architecture

 2-D array of
connected ALUs

 Connections
often limited to
direct neighbors

 Sometimes data
may only move
downwards
(starting at the
top of the array
and ending at
the bottom)

M. Damschen, KIT, 2016

- 23 - M. Damschen, KIT, 2016

 Different connection Topologies: Performance vs. Area
◦ 2D Mesh (1 step Manhattan neighborship, also called von

Neumann neighborship)

◦ Extended Mesh (2 step orthogonal Manhattan neighborship)

◦ Full orthogonal neighborship (each FU can access all other FUs in
the same column and the same row)

src: B. Mei et al. “Architecture Exploration for a Reconfigurable Architecture
Template”, IEEE Design and Test of Computers, vol. 22, no. 2, pp. 90-101, 2005

- 24 - M. Damschen, KIT, 2016

 Left side: Number and
placement of Multipliers
(more expensive than ALUs)

 Bottom side: Number and
placement of load/ store
units

src: B. Mei et al. “Architecture Exploration for a Reconfigurable Architecture Template”,
 IEEE Design and Test of Computers, vol. 22, no. 2, pp. 90-101, 2005

M. Damschen, KIT, 2016

- 25 - M. Damschen, KIT, 2016

 Reconfigurable Hardware can be used to
implement accelerators
◦ Connected to CPU

◦ Used by applications

 Reconfigurable hardware is implemented by
◦ Fine-grained structures (LUT array) or

◦ Coarse-grained structures (ALU array)

◦ They differ in their efficiency, depending on the required
operations (bit/byte level vs. word level)

 Configuration data and configuration time have
to be kept in mind to exploit the advantages of
run-time reconfiguration

