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2. Overview and Definitions 
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 “Computing System that can (partially) 

change the functionality of its hardware” 

 This definition implies the use of so-called 

Reconfigurable Hardware 

 Other definitions exist (e.g. changing the 

software, changing the task mapping & task 

scheduling etc.) but in the scope of this 

lecture we will focus on those approaches 

that use reconfigurable hardware 
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 Here, we do not mean ‘time’ as a 
physical unit or a continuous flow 
◦ Rather, in the following we need to 

distinguish three distinct points in time 

 Design time: The system is specified, 
the architecture is designed and the 
IC is taped out and sold to customers 

 Compile time: Software (e.g. application) 
is compiled for the design-time fixed 
IC; it can be simulated, profiled etc. 

 Run time: The application executes on the IC 
and faces varying situations (input data, other 
applications etc.) 
◦ Startup time: when the system boots, application starts etc. 

src: Einstein, wissen.de 
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 “Adaptive computing refers to the capability of a com-

puting system to autonomously adapt one or more of 

its properties (e.g. performance) during run time.” 

 Reconfigurable Hardware is one of the key paradigms 

that enable Adaptive Systems 

 Not all reconfigurable systems are adaptive 

◦ they don‘t need to perform run-time reconfiguration 

◦ or they might only perform compile-time predetermined 
run-time reconfigurations 

 Not all adaptive systems rely on reconfigurable 

hardware (e.g. they might use clever software or 

OS/middleware to adapt their properties) 
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 An description of the particular work load of the 
system for a particular time 

 Which tasks are executing? 

 How do these tasks depend on each other? 
◦ Data dependencies in a task graph 

◦ Resource conflicts, e.g. cache or periphery 

 What are the deadlines for the tasks? 

 What are the priorities for the tasks? 

 What is the input data for the tasks? 

 What are the requirements of the tasks 
(computational power, energy consumption, demand 
for hardware accelerators etc.) 
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 The reconf. hardware can 
be used to implement 
application specific 
accelerators on demand 

 The accelerators exploit: 
◦ parallelism (multiple 

independent operations are 
executed at the same time in 
parallel) and 

◦ operator chaining (multiple 
data-dependent operations 
are executed right after each 
other in the same cycle) to 
achieve speedup 
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 It is hardly possible to 
physically change the 
transistors (N-P doping 
etc.) and the metal 
layers after fabrication 

 Changing them fast (for 
run-time reconfiguration) 
and in a meaningful way 
can be considered 
impossible 

 So, that’s it?? 
src: FujitsuSuperSPARCII-85, cpu-world.com 
       Weller, pkelektronik.com 

?? 
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User I/O 

Configura- 
tion Data 

src: Kalenteridis et al. “A complete platform and toolset for system implementation 
on fine-grained reconfigurable hardware“, Microprocessors and Microsystems 2004 
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src: Xilinx Virtex-II User Guide 



- 12 - M. Damschen, KIT, 2016 

 Two crossing lines are 

either connected or not 

◦ Control Bit decides 

 Fine Grained: Each bit 

line can be configured 

independently 

 Coarse Grained: Multiple 

bit lines (bus) together 

 src: T.J. Todman et al.: “Reconfigurable computing: 
architectures and design methods”, IEEE Proc.-
Comput. Digit. Tech., Vol. 152, No. 2, March 2005 
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CLB: Configurable 
Logic Block 

PSM: Programmable 
Switch Matrix 

Additionally: 
I/O Blocks, 
RAM Blocks, 
Multiplier, 
CPUs, … 

Virtex-II 6000: 
96x88 CLBs 
8.448 CLBs 
67.584 LUTs 

Virtex 4 LX 160: 
192x88 CLBs 
16.896 CLBs 
135.168 LUTs 

Virtex 7 2000T: 

  1.221.600 LUTs 

src: Xilinx Data Sheet 060 „Spartan and Spartan-XL Families […]“ 

M. Damschen, KIT, 2016 
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Configuration Memory (off-chip) 

 Logic Layer: perform the 
actual computation 

 Configuration Layer: 
determine the kind of 
computation that shall be 
performed 
◦ Is typically configured from 

external memory 

◦ May also provide some con-
figuration cache inside the FPGA 

 May allow reconfiguration of 
parts of the area 
 partial reconfiguration 
◦ This allows placing a logic 

inside the FPGA that recon-
figures another part of the FPGA 
 Self-reconfiguration 

Configuration Layer 

Logic layer Logic layer 
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 PROM based (Fuse, Anti-Fuse) 

— Only writeable one time 

 (E)EPROM/Flash based (Floating-Gate) 

+ Non-volatile  immediately configured after boot up 

+ Configuration data not (necessarily) readable outside 

the FPGA  Security; Intellectual Property (IP) protection 

+ Low power consumption 

— Limited re-writeability (i.e. only good for a limited 

number of reconfigurations) 

— Slow write access  not suitable for run-time 

reconfiguration / self-reconfiguration 
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 SRAM based 
+ Allows arbitrary number of reconfigurations 
 good for prototyping 

+ Fast reconfiguration 
 Allows for run-time reconfiguration and self-reconfiguration 

— Needs to be reconfigured after every boot up 
 high power consumption 
 Security problem, as everyone can observe the configuration 
data (possible solution: bitstream encryption) 

 Hybrid (both EEPROM and SRAM on the die / in the 
package) 
+ Allows fast run-time reconfiguration (SRAM) and does not need 

external configuration data after boot up (automatically copying 
EEPROM to SRAM) 

— Still high power consumption during boot up 

— Needs larger chip area 
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 Def.: ‘Bitstream’ : configuration data that is copied to the 
configuration layer 

 Def.: ‘Partial Bitstream’  /  ‘Full Bitstream’ : a Bitstream 
that configures ‘only certain parts of’ / ‘the entire’ FPGA 

 A Bitstreams can become rather large: 
◦ Full Bitstream depends on the FPGA, e.g. 2-20 MB for Virtex-6 

◦ Partial Bitstream depend on the design, e.g. 100 KB – 1 MB 

 Definition ‘Reconfiguration Bandwidth’ : the average 
bandwidth to copy the Bitstream from the external 
memory to the Configuration Layer (MB/s) 
◦ Virtex-II was specified for 50 MB/s and was demonstrated to work 

at 100 MB/s 

◦ More recent FPGAs allow faster reconf. bandwidths (e.g. 32 bit @ 
100 MHz = 400 MB/s), but memory may become the bottleneck 
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 Practically, the bandwidth is limited by the 

external memory 

◦ In CES demonstrator for RISPP project we used 

external EEPROM that provides on avg. 36 MB/s 

◦ Alternatively, the system DDR RAM might be used 

to store the partial Bitstreams 

 Reduces the system’s memory performance during 
reconfiguration 
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 Resulting Reconfiguration time 
◦ Typically 1 ms - 10 ms if fast configuration ports are used 

 Note: 1 MB/s corresponds to 1 KB/ms 

◦ 100 KB @ 100 MB/s  1 ms 

◦ 1 MB @ 200 MB/s  5 ms 

◦ In CES demonstrator typically 30-40 KB @ 36 MB/s  0.8 – 
1.1 ms 

 How long is 1ms? 
◦ 100,000 cycles of a 100 MHz CPU 

◦ 1 million cycles of a 1 GHz CPU 

◦ Task switch time (time slice) in Linux : ~10 ms 
(depends on task scheduler, kernel version etc.; to some 
degree configurable; could be 1ms, could be 100ms) 
  it’s a rather long time for a CPU 
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 If multiple arithmetic and/or logical 
operations need to be performed, then 
an ALU might outperform LUTs: 

 Differences: 
+ Significantly less configuration data 

+ Smaller area footprint (for the operations it 
implements) 

+ Higher Frequency 

— Reduced efficiency when facing non-
arithmetic operations or bit-level operations 
(resulting in increased area requirements 
and/or increased latency) 
 E.g. bit shuffling: how many cycles are needed 

to perform the operation shown on the right 
side with one ALU? Or: How many ALUs are 
needed to pipeline the operation? 

ALU
ctrl

16 bit Input 16 bit Output
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src: PACT’s XPP 64-A1 architecture 

 2-D array of 
connected ALUs 

 Connections 
often limited to 
direct neighbors 

 Sometimes data 
may only move 
downwards 
(starting at the 
top of the array 
and ending at 
the bottom) 

M. Damschen, KIT, 2016 
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 Different connection Topologies: Performance vs. Area 
◦ 2D Mesh (1 step Manhattan neighborship, also called von 

Neumann neighborship) 

◦ Extended Mesh (2 step orthogonal Manhattan neighborship) 

◦ Full orthogonal neighborship (each FU can access all other FUs in 
the same column and the same row) 

 

src: B. Mei et al. “Architecture Exploration for a Reconfigurable Architecture 
Template”, IEEE Design and Test of Computers, vol. 22, no. 2, pp. 90-101, 2005 
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 Left side: Number and 
placement of Multipliers 
(more expensive than ALUs) 

 Bottom side: Number and 
placement of load/ store 
units 

src: B. Mei et al. “Architecture Exploration for a Reconfigurable Architecture Template”, 
              IEEE Design and Test of Computers, vol. 22, no. 2, pp. 90-101, 2005 

M. Damschen, KIT, 2016 
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 Reconfigurable Hardware can be used to 
implement accelerators 
◦ Connected to CPU 

◦ Used by applications 

 Reconfigurable hardware is implemented by 
◦ Fine-grained structures (LUT array) or 

◦ Coarse-grained structures (ALU array) 

◦ They differ in their efficiency, depending on the required 
operations (bit/byte level vs. word level) 

 Configuration data and configuration time have 
to be kept in mind to exploit the advantages of 
run-time reconfiguration 


