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2. Overview and Definitions 
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 “Computing System that can (partially) 

change the functionality of its hardware” 

 This definition implies the use of so-called 

Reconfigurable Hardware 

 Other definitions exist (e.g. changing the 

software, changing the task mapping & task 

scheduling etc.) but in the scope of this 

lecture we will focus on those approaches 

that use reconfigurable hardware 
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 Here, we do not mean ‘time’ as a 
physical unit or a continuous flow 
◦ Rather, in the following we need to 

distinguish three distinct points in time 

 Design time: The system is specified, 
the architecture is designed and the 
IC is taped out and sold to customers 

 Compile time: Software (e.g. application) 
is compiled for the design-time fixed 
IC; it can be simulated, profiled etc. 

 Run time: The application executes on the IC 
and faces varying situations (input data, other 
applications etc.) 
◦ Startup time: when the system boots, application starts etc. 

src: Einstein, wissen.de 
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 “Adaptive computing refers to the capability of a com-

puting system to autonomously adapt one or more of 

its properties (e.g. performance) during run time.” 

 Reconfigurable Hardware is one of the key paradigms 

that enable Adaptive Systems 

 Not all reconfigurable systems are adaptive 

◦ they don‘t need to perform run-time reconfiguration 

◦ or they might only perform compile-time predetermined 
run-time reconfigurations 

 Not all adaptive systems rely on reconfigurable 

hardware (e.g. they might use clever software or 

OS/middleware to adapt their properties) 
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 An description of the particular work load of the 
system for a particular time 

 Which tasks are executing? 

 How do these tasks depend on each other? 
◦ Data dependencies in a task graph 

◦ Resource conflicts, e.g. cache or periphery 

 What are the deadlines for the tasks? 

 What are the priorities for the tasks? 

 What is the input data for the tasks? 

 What are the requirements of the tasks 
(computational power, energy consumption, demand 
for hardware accelerators etc.) 
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 Integrate the 
reconfigurable 
HW into 
the pipe- 
line of a 
pro- 
cessor 

 Use it as 
a reconfi- 
gurable 
functional 
unit (RFU) 

 Further pos- 
sibilities exist 
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 The reconf. hardware can 
be used to implement 
application specific 
accelerators on demand 

 The accelerators exploit: 
◦ parallelism (multiple 

independent operations are 
executed at the same time in 
parallel) and 

◦ operator chaining (multiple 
data-dependent operations 
are executed right after each 
other in the same cycle) to 
achieve speedup 
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 It is hardly possible to 
physically change the 
transistors (N-P doping 
etc.) and the metal 
layers after fabrication 

 Changing them fast (for 
run-time reconfiguration) 
and in a meaningful way 
can be considered 
impossible 

 So, that’s it?? 
src: FujitsuSuperSPARCII-85, cpu-world.com 
       Weller, pkelektronik.com 

?? 
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User I/O 

Configura- 
tion Data 

src: Kalenteridis et al. “A complete platform and toolset for system implementation 
on fine-grained reconfigurable hardware“, Microprocessors and Microsystems 2004 
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src: Xilinx Virtex-II User Guide 
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 Two crossing lines are 

either connected or not 

◦ Control Bit decides 

 Fine Grained: Each bit 

line can be configured 

independently 

 Coarse Grained: Multiple 

bit lines (bus) together 

 src: T.J. Todman et al.: “Reconfigurable computing: 
architectures and design methods”, IEEE Proc.-
Comput. Digit. Tech., Vol. 152, No. 2, March 2005 
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CLB: Configurable 
Logic Block 

PSM: Programmable 
Switch Matrix 

Additionally: 
I/O Blocks, 
RAM Blocks, 
Multiplier, 
CPUs, … 

Virtex-II 6000: 
96x88 CLBs 
8.448 CLBs 
67.584 LUTs 

Virtex 4 LX 160: 
192x88 CLBs 
16.896 CLBs 
135.168 LUTs 

Virtex 7 2000T: 

  1.221.600 LUTs 

src: Xilinx Data Sheet 060 „Spartan and Spartan-XL Families […]“ 

M. Damschen, KIT, 2016 
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Configuration Memory (off-chip) 

 Logic Layer: perform the 
actual computation 

 Configuration Layer: 
determine the kind of 
computation that shall be 
performed 
◦ Is typically configured from 

external memory 

◦ May also provide some con-
figuration cache inside the FPGA 

 May allow reconfiguration of 
parts of the area 
 partial reconfiguration 
◦ This allows placing a logic 

inside the FPGA that recon-
figures another part of the FPGA 
 Self-reconfiguration 

Configuration Layer 

Logic layer Logic layer 
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 PROM based (Fuse, Anti-Fuse) 

— Only writeable one time 

 (E)EPROM/Flash based (Floating-Gate) 

+ Non-volatile  immediately configured after boot up 

+ Configuration data not (necessarily) readable outside 

the FPGA  Security; Intellectual Property (IP) protection 

+ Low power consumption 

— Limited re-writeability (i.e. only good for a limited 

number of reconfigurations) 

— Slow write access  not suitable for run-time 

reconfiguration / self-reconfiguration 
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 SRAM based 
+ Allows arbitrary number of reconfigurations 
 good for prototyping 

+ Fast reconfiguration 
 Allows for run-time reconfiguration and self-reconfiguration 

— Needs to be reconfigured after every boot up 
 high power consumption 
 Security problem, as everyone can observe the configuration 
data (possible solution: bitstream encryption) 

 Hybrid (both EEPROM and SRAM on the die / in the 
package) 
+ Allows fast run-time reconfiguration (SRAM) and does not need 

external configuration data after boot up (automatically copying 
EEPROM to SRAM) 

— Still high power consumption during boot up 

— Needs larger chip area 
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 Def.: ‘Bitstream’ : configuration data that is copied to the 
configuration layer 

 Def.: ‘Partial Bitstream’  /  ‘Full Bitstream’ : a Bitstream 
that configures ‘only certain parts of’ / ‘the entire’ FPGA 

 A Bitstreams can become rather large: 
◦ Full Bitstream depends on the FPGA, e.g. 2-20 MB for Virtex-6 

◦ Partial Bitstream depend on the design, e.g. 100 KB – 1 MB 

 Definition ‘Reconfiguration Bandwidth’ : the average 
bandwidth to copy the Bitstream from the external 
memory to the Configuration Layer (MB/s) 
◦ Virtex-II was specified for 50 MB/s and was demonstrated to work 

at 100 MB/s 

◦ More recent FPGAs allow faster reconf. bandwidths (e.g. 32 bit @ 
100 MHz = 400 MB/s), but memory may become the bottleneck 
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 Practically, the bandwidth is limited by the 

external memory 

◦ In CES demonstrator for RISPP project we used 

external EEPROM that provides on avg. 36 MB/s 

◦ Alternatively, the system DDR RAM might be used 

to store the partial Bitstreams 

 Reduces the system’s memory performance during 
reconfiguration 



- 19 - M. Damschen, KIT, 2016 

 Resulting Reconfiguration time 
◦ Typically 1 ms - 10 ms if fast configuration ports are used 

 Note: 1 MB/s corresponds to 1 KB/ms 

◦ 100 KB @ 100 MB/s  1 ms 

◦ 1 MB @ 200 MB/s  5 ms 

◦ In CES demonstrator typically 30-40 KB @ 36 MB/s  0.8 – 
1.1 ms 

 How long is 1ms? 
◦ 100,000 cycles of a 100 MHz CPU 

◦ 1 million cycles of a 1 GHz CPU 

◦ Task switch time (time slice) in Linux : ~10 ms 
(depends on task scheduler, kernel version etc.; to some 
degree configurable; could be 1ms, could be 100ms) 
  it’s a rather long time for a CPU 
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 The rather slow reconfi-
guration time is due to the 
large amount of configu-
ration data 

 For instance, the examples 
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bit Adds, Subs & Mults 

 Many LUTs need to be 
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 If multiple arithmetic and/or logical 
operations need to be performed, then 
an ALU might outperform LUTs: 

 Differences: 
+ Significantly less configuration data 

+ Smaller area footprint (for the operations it 
implements) 

+ Higher Frequency 

— Reduced efficiency when facing non-
arithmetic operations or bit-level operations 
(resulting in increased area requirements 
and/or increased latency) 
 E.g. bit shuffling: how many cycles are needed 

to perform the operation shown on the right 
side with one ALU? Or: How many ALUs are 
needed to pipeline the operation? 

ALU
ctrl

16 bit Input 16 bit Output
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src: PACT’s XPP 64-A1 architecture 

 2-D array of 
connected ALUs 

 Connections 
often limited to 
direct neighbors 

 Sometimes data 
may only move 
downwards 
(starting at the 
top of the array 
and ending at 
the bottom) 

M. Damschen, KIT, 2016 
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 Different connection Topologies: Performance vs. Area 
◦ 2D Mesh (1 step Manhattan neighborship, also called von 

Neumann neighborship) 

◦ Extended Mesh (2 step orthogonal Manhattan neighborship) 

◦ Full orthogonal neighborship (each FU can access all other FUs in 
the same column and the same row) 

 

src: B. Mei et al. “Architecture Exploration for a Reconfigurable Architecture 
Template”, IEEE Design and Test of Computers, vol. 22, no. 2, pp. 90-101, 2005 
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 Left side: Number and 
placement of Multipliers 
(more expensive than ALUs) 

 Bottom side: Number and 
placement of load/ store 
units 

src: B. Mei et al. “Architecture Exploration for a Reconfigurable Architecture Template”, 
              IEEE Design and Test of Computers, vol. 22, no. 2, pp. 90-101, 2005 

M. Damschen, KIT, 2016 
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 Reconfigurable Hardware can be used to 
implement accelerators 
◦ Connected to CPU 

◦ Used by applications 

 Reconfigurable hardware is implemented by 
◦ Fine-grained structures (LUT array) or 

◦ Coarse-grained structures (ALU array) 

◦ They differ in their efficiency, depending on the required 
operations (bit/byte level vs. word level) 

 Configuration data and configuration time have 
to be kept in mind to exploit the advantages of 
run-time reconfiguration 


